Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 21: 101062, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38259510

RESUMO

Innovations for product preservation have attracted interest as they may increase the shelf-life of items when stored properly. In this study, the effects of various storage conditions, including four types of packaging (paper packaging, paper combined PE packaging, aluminum combined PE packaging, and plastic jar packaging) and temperatures (5, 15, 30, and 45 °C) on the quality of dried soursop were evaluated. The results demonstrated that the combination of plastic jar packaging and a storage temperature of 15 °C retained a significant portion of the initial total ascorbic acid content, total polyphenol content, and total flavonoid content. After four weeks of storage, the dried soursop preserve packaged in a plastic jar and stored at 15 °C exhibited a moisture content of 22.977 ± 0.093 %, total ascorbic acid content of 9.7 ± 0.46 mg/100gDW, total polyphenol content of 8.12 ± 0.06 mgGAE/gDW, total flavonoid content of 0.18 ± 0.02 mgQE/gDW, DPPH and ABTS scavenging activity of 0.69 ± 0.01 mgAA/gDW and 0.82 ± 0.01 mgAA/gDW, respectively. Moreover, the product meets the requirements of decision 46/2007/QD-BYT regulating the limits on biological and chemical contamination in food. The study offers valuable insights for the food industry in optimizing packaging and storage conditions to ensure the storage of quality and health-beneficial properties of this product.

2.
Infect Drug Resist ; 15: 2685-2688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652083

RESUMO

Recent years have witnessed the rise of artificial intelligence (AI) in antimicrobial resistance (AMR) management, implying a positive signal in the fight against antibiotic-resistant microbes. The impact of AI starts with data collection and preparation for deploying AI-driven systems, which can lay the foundation for some effective infection control strategies. Primary applications of AI include identifying potential antimicrobial molecules, rapidly testing antimicrobial susceptibility, and optimizing antibiotic combinations. Aside from their outstanding effectiveness, these applications also express high potential in narrowing the burden gap of AMR among different settings around the world. Despite these benefits, the interpretability of AI-based systems or models remains vague. Attempts to address this issue had led to two novel explanation techniques, but none have shown enough robustness or comprehensiveness to be widely applied in AI and AMR control. A multidisciplinary collaboration between the medical field and advanced technology is therefore needed to partially manage this situation and improve the AI systems' performance and their effectiveness against drug-resistant pathogens, in addition to multiple equity actions for mitigating the failure risks of AI due to a global-scale equity gap.

3.
J Pharm Policy Pract ; 14(1): 109, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930487

RESUMO

BACKGROUND: Clinical pharmacists have an important role in inter-professional healthcare collaboration for epilepsy management. However, the pharmacy practices of managing epilepsy are still limited in Vietnam, deterring pharmacists from routine adjustments of antiepileptic drugs, which could decrease the patients' quality of life. This study aimed to assess the effectiveness of pharmacist interventions in epilepsy treatment at a Vietnamese general hospital. METHODS: A before-and-after study was conducted from January 2016 to December 2018. All patients with a diagnosis of epilepsy and being treated at the investigated hospital were recruited and screened for eligibility and exclusion criteria. The primary outcome was the proportion of patients in good control of their epilepsy (with two seizures or less in a year). The secondary outcome was the number of patients maintaining optimized concentrations within the therapeutic range of carbamazepine (4-12 mg/L), phenytoin (10-20 mg/L), or valproic acid (50-100 mg/L). Collected data were analyzed using two proportions Z-test or Chi-square test. RESULTS: A total of 141 participants were enrolled in the study. While most patients were given lower prescribed daily doses than the recommendations from the World Health Organization, over 56% of the participants still experienced adverse drug effects. More than half of the patients received at least one pharmacists' intervention, which increased by 25.0% the effectiveness of the therapy (p < 0.001) and by 14.6% the number of patients with optimized drug concentrations (p = 0.018). CONCLUSION: Epilepsy management requires a multiple-stepped and comprehensive approach, with a focus on the health and safety of the patients. As part of the healthcare team, pharmacists need to engage at every stage to monitor the patient's response and determine the most effective treatment with the fewest adverse drug reactions. Trial registration ClinicalTrials.gov, NCT04967326. Registered July 19, 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04967326.

4.
Endocr Relat Cancer ; 28(7): 481-494, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33999009

RESUMO

The cumulative effect of single-nucleotide polymorphisms (SNPs) on thyroid cancer has been adequately defined in individuals of European ancestry; however, similar evidence in the Korean population is limited. This study aimed to investigate the influence of modifiable factors and the polygenic risk score (PRS) and their interactive and combined effects on thyroid cancer. Using data from the cancer screenee cohort, this study included 759 thyroid cancer cases and 759 age- and sex-matched controls. We examined the effects of tobacco smoking, alcohol consumption, and regular exercise habits, BMI, and the PRS of six SNPs on thyroid cancer. Odds ratios (ORs) and 95% confidence intervals (CIs) for the associations were obtained using a conditional logistic regression model. The results indicated that family history, obesity, and the unweighted and weighted PRS were independently associated with susceptibility to thyroid cancer, with ORs (95% CIs) of 2.96 (1.63-5.36), 1.72 (1.20-2.48), 1.46 (1.10-1.93), and 1.56 (1.19-2.03), respectively, whereas the effect of smoking, drinking, and regular exercise was not significant. The contribution of the PRS remained after stratifying participants with healthy behaviors, such as nonsmokers/nondrinkers, and regular exercise. Although the PRS did not significantly contribute to the risk for thyroid cancer when participants were stratified according to BMI, BMI and the PRS had a cumulative effect on thyroid cancer risk. The combined effect of genetic polymorphisms on predisposition to thyroid cancer may differ based on tobacco smoking, alcohol consumption, regular exercise behaviors and cumulative BMI. Larger population-based studies are needed to validate these findings.


Assuntos
Fumar , Neoplasias da Glândula Tireoide , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Fumar/efeitos adversos , Neoplasias da Glândula Tireoide/epidemiologia , Neoplasias da Glândula Tireoide/genética
5.
Plant Physiol ; 184(3): 1482-1498, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32859754

RESUMO

Patatin-related phospholipase As (pPLAs) are major hydrolases acting on acyl-lipids and play important roles in various plant developmental processes. pPLAIII group members, which lack a canonical catalytic Ser motif, have been less studied than other pPLAs. We report here the characterization of pPLAIIIα in Arabidopsis (Arabidopsis thaliana) based on the biochemical and physiological characterization of pPLAIIIα knockouts, complementants, and overexpressors, as well as heterologous expression of the protein. In vitro activity assays on the purified recombinant protein showed that despite lack of canonical phospholipase motifs, pPLAIIIα had a phospholipase A activity on a wide variety of phospholipids. Overexpression of pPLAIIIα in Arabidopsis resulted in a decrease in many lipid molecular species, but the composition in major lipid classes was not affected. Fluorescence tagging indicated that pPLAIIIα localizes to the plasma membrane. Although Arabidopsis pplaIIIα knockout mutants showed some phenotypes comparable to other pPLAIIIs, such as reduced trichome length and increased hypocotyl length, control of seed size and germination were identified as distinctive pPLAIIIα-mediated functions. Expression of some PLD genes was strongly reduced in the pplaIIIα mutants. Overexpression of pPLAIIIα caused increased resistance to turnip crinkle virus, which associated with a 2-fold higher salicylic acid/jasmonic acid ratio and an increased expression of the defense gene pathogenesis-related protein1. These results therefore show that pPLAIIIα has functions that overlap with those of other pPLAIIIs but also distinctive functions, such as the control of seed germination. This study also provides new insights into the pathways downstream of pPLAIIIα.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Carmovirus/patogenicidade , Resistência à Doença/genética , Germinação/genética , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Arabidopsis/virologia , Resistência à Doença/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Germinação/fisiologia , Mutação , Fosfolipases/genética , Fosfolipídeos/genética , Plantas Geneticamente Modificadas/metabolismo
6.
J Ginseng Res ; 41(4): 463-468, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29021692

RESUMO

BACKGROUND: Both Panax ginseng Meyer and Panax quinquefolius are obligate shade-loving plants whose natural habitats are broadleaved forests of Eastern Asia and North America. Panax species are easily damaged by photoinhibition when they are exposed to high temperatures or insufficient shade. In this study, a cytohistological study of the leaf structures of two of the most well-known Panax species was performed to better understand the physiological processes that limit photosynthesis. METHODS: Leaves of ginseng plants grown in soil and hydroponic culture were sectioned for analysis. Leaf structures of both Panax species were observed using a light microscope, scanning electron microscope, and transmission electron microscope. RESULTS: The mesostructure of both P. ginseng and P. quinquefolius frequently had one layer of noncylindrical palisade cells and three or four layers of spongy parenchymal cells. P. quinquefolius contained a similar number of stomata in the abaxial leaf surface but more tightly appressed enlarged grana stacks than P. ginseng contained. The adaxial surface of the epidermis in P. quinquefolius showed cuticle ridges with a pattern similar to that of P. ginseng. CONCLUSION: The anatomical leaf structure of both P. ginseng and P. quinquefolius shows that they are typical shade-loving sciophytes. Slight differences in chloroplast structure suggests that the two different species can be authenticated using transmission electron microscopy images, and light-resistant cultivar breeding can be performed via controlling photosynthesis efficiency.

7.
J Ginseng Res ; 41(3): 403-410, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701884

RESUMO

BACKGROUND: Prenyltransferases catalyze the sequential addition of isopentenyl diphosphate units to allylic prenyl diphosphate acceptors and are classified as either trans-prenyltransferases (TPTs) or cis-prenyltransferases (CPTs). The functions of CPTs have been well characterized in bacteria, yeast, and mammals compared to plants. The characterization of CPTs also has been less studied than TPTs. In the present study, molecular cloning and functional characterization of a CPT from a medicinal plant, Panax ginseng Mayer were addressed. METHODS: Gene expression patterns of PgCPT1 were analyzed by quantitative reverse transcription polymerase chain reaction. In planta transformation was generated by floral dipping using Agrobacterium tumefaciens. Yeast transformation was performed by lithium acetate and heat-shock for rer2Δ complementation and yeast-two-hybrid assay. RESULTS: The ginseng genome contains at least one family of three putative CPT genes. PgCPT1 is expressed in all organs, but more predominantly in the leaves. Overexpression of PgCPT1 did not show any plant growth defect, and its protein can complement yeast mutant rer2Δ via possible protein-protein interaction with PgCPTL2. CONCLUSION: Partial complementation of the yeast dolichol biosynthesis mutant rer2Δ suggested that PgCPT1 is involved in dolichol biosynthesis. Direct protein interaction between PgCPT1 and a human Nogo-B receptor homolog suggests that PgCPT1 requires an accessory component for proper function.

8.
J Ginseng Res ; 41(3): 419-427, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28701886

RESUMO

BACKGROUND: Glycosylation of natural compounds increases the diversity of secondary metabolites. Glycosylation steps are implicated not only in plant growth and development, but also in plant defense responses. Although the activities of uridine-dependent glycosyltransferases (UGTs) have long been recognized, and genes encoding them in several higher plants have been identified, the specific functions of UGTs in planta remain largely unknown. METHODS: Spatial and temporal patterns of gene expression were analyzed by quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) and GUS histochemical assay. In planta transformation in heterologous Arabidopsis was generated by floral dipping using Agrobacterium tumefaciens (C58C1). Protein localization was analyzed by confocal microscopy via fluorescent protein tagging. RESULTS: PgUGT72AL1 was highly expressed in the rhizome, upper root, and youngest leaf compared with the other organs. GUS staining of the promoter: GUS fusion revealed high expression in different organs, including axillary leaf branch. Overexpression of PgUGT72AL1 resulted in a fused organ in the axillary leaf branch. CONCLUSION: PgUGT72AL1, which is phylogenetically close to PgUGT71A27, is involved in the production of ginsenoside compound K. Considering that compound K is not reported in raw ginseng material, further characterization of this gene may shed light on the biological function of ginsenosides in ginseng plant growth and development. The organ fusion phenotype could be caused by the defective growth of cells in the boundary region, commonly regulated by phytohormones such as auxins or brassinosteroids, and requires further analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...